WHAT IS A LOGARITHM?
A logarithm is the power to which a number must be raised in order to get some other number. For example, the base ten logarithm of 100 is 2, because ten raised to the power of two is 100:
log 100 = 2
because
102
= 100
This is an example of a base-ten logarithm. We call it a base ten logarithm because ten is the number that is raised to a power. The base unit is the number being raised to a power. There are logarithms using different base units. If you wanted, you could use two as a base unit. For instance, the base two logarithm of eight is three, because two raised to the power of three equals eight:
log2(8) = 3 because 23 = 8
In general, you write log followed by the base number as a subscript. The most common logarithms are base 10 logarithms and natural logarithms; they have special notations. A base ten log is written log
and a base ten logarithmic equation is usually written in the form: log a = r
A natural logarithm is written ln
and a natural logarithmic equation is usually written in the form: ln a = r
So, when you see log by itself, it means base ten log. When you see ln, it means natural logarithm (we'll define natural logarithms below). In this course only base ten and natural logarithms will be used.
Logarithms are the "opposite" of exponentials, just as subtraction is the opposite of addition and division is the opposite of multiplication. Logs "undo" exponentials. Technically speaking, logs are the inverses of exponentials.
In practical terms, I have found it useful to think of logs in terms of The Relationship:
y = bx
is equivalent to......
(means the exact same thing as)
logb(y) = x
On the left-hand side above is the exponential statement "y = bx". On the right-hand side above, "logb(y) = x" is the equivalent logarithmic statement, which is pronounced "log-base-b of y equals x"; The value of the subscripted "b" is "the base of the logarithm", just as b is the base in the exponential expression "bx". And, just as the base b in an exponential is always positive and not equal to 1, so also the base b for a logarithm is always positive and not equal to 1. Whatever is inside the logarithm is called the "argument" of the log. Note that the base in both the exponential equation and the log equation (above) is "b", but that the x and y switch sides when you switch between the two equations.
If you can remember this relationship (that whatever had been the argument of the log becomes the "equals" and whatever had been the "equals" becomes the exponent in the exponential, and vice versa), then you shouldn't have too much trouble with logarithms.
(I coined the term "The Relationship" myself. You will not find it in your text, and your teachers and tutors will have no idea what you're talking about if you mention it to them. "The Relationship" is entirely non-standard terminology. Why do I use it anyway? Because it works.)
By the way: If you noticed that I switched the variables between the two boxes displaying "The Relationship", you've got a sharp eye. I did that on purpose, to stress that the point is not the variables themselves, but how they move.
Convert "63
To convert, the base (that is, the 6)remains the same, but the 3 and the 216 switch sides.
This gives me: log6(216) = 3
Convert "logLog41024= 5" to the equivalent exponential expression.
To convert, the base (that is, the 4) remains the same, but the 1024 and the 5 switch sides. This gives me:
4